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ABSTRACT 

The adaptive bandwidth technique is commonly used to implement fast switching in 

low-spurious frequency synthesizers. In this technique the high loop bandwidth used during 

the switching mode has to be restored once switching is complete. The process of restoring 

the bandwidth adds to the total switching time because of the glitches on the VCO control 

voltage arising from the perturbation caused in the loop. Often in applications demanding 

ultra fast switching times and tight error tolerances, the additional settling time due to these 

secondary glitches can be a significant fraction of the total switching time. In this thesis, a 

more efficient multi-step bandwidth-switching scheme is proposed that can significantly 

reduce the total switching time by minimizing the effect of secondary glitches. After 

satisfactory behavioral simulations, a proof-of-concept test chip integrating a 2.4GHz 

Integer-N synthesizer is designed and fabricated in the TSMC 0.25pm mixed-signal CMOS 

process. Simulations using time contraction show that the synthesizer switches 14% faster in 

the four-step mode compared to the one-step mode for a frequency step of 20MHz and 0.1% 

error tolerance. 
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

Wireless communication standards such as Bluetooth and Wireless LAN (802.11) use 

frequency hopping for data security and better immunity to multi-path fading. Frequency 

hopping refers to the repeated switching of the carrier among different frequency channels 

during transmission. A Phase Locked Loop (PLL) based fully integrated frequency 

synthesizer that can generate multiple frequencies using a single reference frequency offers 

an efficient implementation for frequency hopping more so with the current advancements in 

CMOS process technology. Some frequency hopping systems use rapid switching of 

frequencies demanding a tight specification on the synthesizer switching time. A common 

approach to achieve rapid switching is to "ping-pong" two synthesizers resulting in nearly 

zero switching time since one synthesizer is already switched to the next frequency in the 

hopping sequence while the other is providing the carrier. This approach proves to be 

inefficient for present day battery-operated miniature wireless devices. A single frequency 

synthesizer that can meet the tight switching time specifications is highly desirable. 

Implementing a fast-switching synthesizer involves design trade-offs, with the open 

loop bandwidth (or simply loop bandwidth) usually being the trade-off parameter. The loop 

bandwidth defined as the cross over frequency of the loop gain affects the switching time and 

spurious requirements in a conflicting manner. Also the loop bandwidth is theoretically a 

small fraction of the reference frequency, which in the case of Integer-N (output frequency is 

an integer multiple of reference frequency) synthesizers cannot exceed channel spacing 

thereby making the trade-off more severe. A commonly used solution to relax the trade-off is 

an adaptive bandwidth synthesizer in which initial lock to the new frequency is obtained in a 

high-bandwidth mode and the bandwidth is restored thereafter for better spurious 

performance. The total switching time of adaptive bandwidth synthesizers includes the initial 
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lock time and the additional time for restoring the bandwidth. Consider a synthesizer with a 

loop bandwidth of fc that switches from frequency fi to f% in 200p,s. Increasing the bandwidth 

to 4fc results in a switching time of 5 Ops (switching time is inversely proportional to loop 

bandwidth as will be shown in the following Chapters). However the bandwidth has to be 

restored from 4fc to fc after frequency fa becomes valid. Thus the total switching time is 50|is 

+ TUL as shown in Figure 1-1, where IHL is the additional time for restoring the bandwidth to 

its nominal value. 
Non-adaptive bandwidth 

synthesizer 

fi valid \2 valid 

200|is 

VA 

Conventional adaptive bandwidth 
synthesizer 

50|LXS tHi_ 

VA 

Proposed adaptive bandwidth 
synthesizer 

(i) 

50gs tHL 

VA 

Proposed adaptive bandwidth 
synthesizer 

(ii) 

F7 
<50(xs tHL time 

Figure 1-1 Objective of the Thesis 

tnL can be a significant fraction of the total switching time depending on the method 

of restoring bandwidth, the initial lock time and the frequency error that can be tolerated. To 

take complete advantage of the high bandwidth mode, IHL must be an insignificant fraction of 

the total switching time. The key to reducing IHL is to minimize the perturbation caused in the 

'already-settled' loop when bandwidth is restored. The objective of this thesis is to adapt the 
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conventional adaptive bandwidth architecture such that IHL can be significantly reduced, as 

shown for proposed architectures (I) and (II) in Figure 1-1, resulting in an optimal total 

switching time. With the proposed architecture (II), the initial lock and IHL phases can be 

overlapped to further optimize the total switching time. 

1.2. Thesis Organization 

The following Chapter presents the theory of frequency synthesizers. Starting with 

the basic architecture, linear models are developed and relevant properties of the feedback 

loop are studied to lay the foundation for Chapter 3 where the main focus of this work is 

discussed. Specifically, in Chapter 3 performance parameters of a synthesizer causing a 

design trade-off, are considered and an existing solution for relaxing the trade-off and 

achieving fast switching is presented with an emphasis on its limitations. A new architecture 

is then proposed that has the potential to overcome the limitations of the existing 

architecture. 

Chapters 4 and 5 discuss in detail the design of the synthesizer using the architecture 

proposed in Chapter 3. In Chapter 4, specific modifications and additions to the conventional 

architecture that result in the proposed architecture are mentioned. System-level parameters 

are specified and used to derive design parameters for the circuit implementation discussed in 

Chapter 5. Design of the basic building blocks, additional building blocks required by the 

proposed architecture and the supplementary blocks useful for debugging and interfacing 

with the real world, is presented in Chapter 5. Chapter 6 starts by considering practical issues 

in synthesizer simulation and then presents the results for transistor-level switching time 

simulations using a speed-up technique. The simulation results for the building blocks are 

also presented in this Chapter. Chapter 7 discusses experimental results. Some information 

about layout, fabrication process and packaging is provided before discussing measured 

results. Chapter 8 provides a conclusion for the thesis. 
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CHAPTER 2. FUNDAMENTALS OF FREQUENCY SYNTHESIZERS 

2.1. Background 

A frequency synthesizer is essentially a Phase-Locked Loop (PLL) in which feedback 

is used to lock the output frequency and phase to the frequency and phase of a stable 

reference. Using a programmable frequency divider in the feedback loop of a PLL leads to an 

efficient way of generating output frequencies that are an exact multiple of the reference 

frequency. Figure 2-1 shows the block diagram of the synthesizer. The phase frequency 

detector (PFD) generates an error signal that is a function of the phase difference between the 

reference (REF) and the feedback (OSC) signals. The charge pump (CP) converts the error 

signal into equivalent current pulses that are filtered by the loop filter (LPF) to produce the 

control voltage for the voltage-controlled oscillator (VCO). The VCO control voltage adjusts 

the output (OUT) frequency such that the frequencies of the reference and the feedback 

signals are equal. 

OUT REF 

OSC 

N-Divider 

VCO PFD 
Charge 

Pump 

Loop 

Filter 

Figure 2-1 Block Diagram of Frequency Synthesizer 
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2.2. Linear Model of Synthesizer 

A linear model of a synthesizer provides good insight for evaluating its transient 

behavior, noise performance and stability. The feedback signal in a synthesizer is the phase 

of the divided VCO output. For small phase errors in the vicinity of the locked state the 

synthesizer can be accurately described by a linear model in the S-domain. 

Figure 2-2 shows the linear model of the synthesizer. The transfer functions for each 

of the building blocks are derived from their respective time-domain relationships. 

PFD-CP: The PFD-CP has a linear range of +/-2TI radians as depicted in the transfer 

characteristic shown in Figure 2-3. The charge pump outputs a maximum current of Icp for a 

phase error magnitude of 2% radians. The transfer function of the PFD-CP in the linear range 

is given by: 

PFD-CP 
Loop 
Filter VCO 

®R(S) VTUNE(S) 
» 

3>o(s) 

N-Divider 

Figure 2-2 Linear Model of Synthesizer 

I LP F CS) I CP 
(2-2) 

©£(s) In 

Loop Filter. A generic transfer function F(s) is used in Figure 2-2. Possible choices 

for F(s) will be considered in Section 2-3. 
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Figure 2-3 PFD Transfer Characteristic 

^ TUNE W 

^ LPF (S) 
= FW (2-3) 

VCO: The VCO frequency is related to the control voltage VTUNE by the tuning 

sensitivity K VCO 

C0O ~ 2flKvcol TUNE 

Equivalent phase relationship in S-domain is obtained as follows: 

Q(-V) = ®o(s)/s = 2xKlvo 

I TUNE (S) ^ TUNE (S) S 
(2-4) 

N-Divider: Since phase is the time integral of frequency, the transfer function can be 

written as 

^44 = - (2-5) 
N 

Using the linear model, the synthesizer can be analyzed using the traditional feedback 

control theory. The closed loop transfer function relating the output phase 0O to the input 

phase OR is given by: 

<2-6) 

N 
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The loop gain transfer function G(s) is useful in analyzing the loop stability. 

<2-7> 

Another useful transfer function relates phase error 0E to the input phase: 

8e<5)- 7*7 <2-8> 
S + -

N 

2.3. Loop Type and Order 

With reference to the above transfer functions, the Type and order of the loop are 

defined as follows: 

Type: refers to the number of poles at the origin in the loop gain transfer function G(s) 

Order : refers to the highest power of S in the denominator of the closed-loop transfer 

function H(s). 

It can be deduced from (2-6) and (2-7) that the loop filter transfer function F(s) 

determines the Type and order of the loop. Several choices for F(s) are possible leading to 

different loop' characteristics. In the following Sections, some of these characteristics are 

studied leading to the choice of a Type-II third-order loop. 

2.3.1 Steady-State Error 

The phase-error transfer function given by (2-8) can be used to compute the steady-

state error in response to a frequency step at the reference input. 

A frequency step of AfR can be represented in S-domain in terms of the reference 

phase input as 

©*(*) = (2-9) 

From (2-8), the phase error is 



www.manaraa.com

8 

(2-10) 

N 

From (2-10), the steady-state error can be obtained using the Final-value Theorem. 

(2-11) 

Equation (2-11) shows the dependency of the steady-state error on the dc gain F(0) of the 

loop filter. For zero steady-state error, F(0) has to be infinite which requires a pole in the 

loop filter at the origin. This results in a Type-II loop since the loop gain transfer function 

G(s) now has two poles at the origin (Equation (2-7)). 

The magnitude response of the loop gain transfer function of the Type-II loop 

described above will have a slope of -12dB/octave at the cross over frequency (loop 

bandwidth), which leads to an unstable system unless a zero (lead network) is added to the 

loop filter that will result in a slope of -6dB/octave at the cross over frequency. However, for 

high-frequency noise filtering, 6dB/octave attenuation is insufficient in most practical cases. 

Addition of another pole increases the attenuation to 12dB/octave at frequencies much higher 

than the loop bandwidth. The result is a Type-II third-order loop with a loop filter transfer 

function of the form 

2.3.2 Stability 

+ l 

F ( s ) = K ^  {  

/^- + 1 

+ 1 

+ 1 

(2-12) 

y 
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K is the loop filter gain; fz and f? are the zero and pole frequencies respectively. A 

common implementation of F(s) suitable for synthesizers using a PFD-CP combination is 

shown in Figure 2-4. 

Figure 2-4 Common Loop Filter Implementation 

For this loop filter 

f z =  1  f p  =  
( C z  +  C p  )  .  K = 

( C z  +c p )  
(2-13) 

2.4. Maximum Phase Margin Loop 

The Type-II third-order loop can be designed to have the maximum phase margin 

possible for given loop filter zero and pole frequencies. This is referred to as a maximum-

phase-margin loop. Its loop bandwidth lies at the geometrical average of the zero and pole 

frequencies as will be demonstrated in this Section. The synthesizer implemented in this 

work uses the maximum-phase-margin loop, which is a common choice and has a well-

defined loop-design procedure. Useful relations for the loop design are derived in this 

Section. 

Consider once again the loop gain transfer function of a Type-II third-order loop in 

the frequency domain. 

• <-«- ' (W///,) (2.14, 
G ( j 2 ¥ ) = - ' c r K , ' c o  

N ( 2 ^ y ( C z + C r ) ( l  +  j f i f z )  
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Its phase response is given by: 

^ ( j 2 #  ) = ~ x  + arctan (// f z  )  - arctan(// f p )  (2-15) 

The frequency £MAX at which the phase is maximum, can be found by setting the 

derivative of vP(j27tf) to zero. The result is shown in (2-16). 

.Am- = -UJl (2-16) 

In order to have the maximum phase margin, the phase of G(j27tf) at the cross-over 

frequency (the loop bandwidth fc) should be maximum as shown in Figure 2-5. This implies 

the loop bandwidth fc should be set to fMAx which is the geometrical average of the zero and 

pole frequencies. 

/c =/M.4.V =VÂÂ (2-17) 

The value of the maximum phase margin <DMAX can be found using (2-15) and (2-17). 

Letting a = fP/fz 

= arctan 
z o - l x  

l4~oc 
(2-18) 

G(j27tf)| 

MAX PHASE(G(j27if)) 

f (log) 

Figure 2-5 Magnitude and Phase Response of Maximum Phase Margin Loop 
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In turn a can be expressed as a function of ®MAX-

« = 7 7 ; ^7 (2-19) 
(- tan(0^ )+1 / cos(0^ )) 

The expression for loop bandwidth can now be derived by setting |G(j7tf)| = 1 and 

using (2-17). After simplification the following expression for fc is obtained. 

S _ ICP K VCO R-Z CZ (R> 0(VI 

f c ~  ( C z  + C P )  < 2 " 2 0 )  

The loop filter zero and pole frequencies in terms of fc and a are given by: 

fz =4^;/, =Vâ/c (2-21) 
Va 

Thus the maximum-phase-margin loop has a greatly simplified loop design 

procedure. With the specified system-level parameters, equations (2-17) to (2-21) can be 

used for loop design as described in Section 4.3. 
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CHAPTER 3. TRADE-OFF AND PROPOSED SOLUTION 

In the design of PLL frequency synthesizers, there exists a trade off between the 

switching time and spur level at the output [1] [2] both of which are strongly dependent on 

the loop bandwidth. Though theory allows a maximum of 1/10 of the reference frequency for 

the loop bandwidth [3], practically the bandwidth is several orders of magnitude smaller than 

this limit in order to meet the spurious performance requirement. Further in Integer-N 

synthesizers, the reference frequency cannot exceed the channel spacing. These limitations 

result in elongated switching times for conventional Integer-N synthesizers. In this Chapter, 

this trade-off is analyzed in terms of the loop parameters and an existing solution and its 

limitations are presented before proposing a modified solution that overcomes these 

limitations. 

Some of the closed-form expressions used in this discussion are based on an 

approximation of a third-order loop with a second-order loop, since the analysis of the former 

is cumbersome and unrewarding in the context of understanding the trade-off. Consider the 

maximum-phase-margin loop of Section 2.4 with a damping ratio ç < 1. The open loop 

bandwidth fc is derived in Section 2.4 and is a function of the loop parameters as shown in 

Reference spurs at the output are caused due to several non-idealities. One such non-

ideal effect, the charge pump leakage is considered in this discussion. Charge pump leakage 

ILEAK results in a phase offset (j)i; between the PFD inputs given by: 

3.1. The Trade-Off 

(3-1). 

fc (3-1) 

(FRE — ITZ 
I 

(3-2) 
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The phase offset gives rise to a spur at the output of magnitude approximately given by [4]: 

C I R ^ cr zv A" 
tE VCO 

PR[dBc] = 20 log 
1 In 

V2 fR 

-20 log 

(3-3) 

= 20log 
A 

^ -201og 
V2 fR 

f f ?  

The closed form expression for the switching time of a third-order loop is not well 

defined. Hence an approximation based on a second-order loop is used which provides 

sufficient insight into the trade-off. The switching time is determined by the natural 

frequency and damping factor which are defined in (3-4). 

= IepK VCO 

Ç = 

N(CZ  +CP)  

1 ®N _ 2_ I fc 

2  2 ^  " 2 ^  

(3-4) 

The switching time for a frequency step Af0 and settling error tolerance s is given by [5]: 

In ¥0 

t, = WW" 

\ f 

In ¥0 

y . 

2^ 
(3-5) 

From (3-3) and (3-5) it follows that the loop bandwidth limits are set by: 

• Minimum limit - Switching time requirement 

• Theoretical maximum limit - 1/10 of reference frequency (fR) 

• Much lower maximum limit - Spurious performance requirement 

Thus a trade-off exists, a common solution to which is to use an adaptive bandwidth 

synthesizer as described in the following section. 
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3.2. Existing Solution 

In the adaptive bandwidth approach, high loop bandwidth is used during frequency 

steps and the loop bandwidth is restored to its nominal value after the frequency has settled to 

its new value so the switching time and spurious requirements can both be met to an 

acceptable level [6] [7], The following section discusses the basic principle in detail. 

3.2.1 Basic Principle of Adaptive Bandwidth Synthesizer 

From (3-5) it can be seen that the switching time for a given frequency step and error 

tolerance depends on the loop bandwidth fc and the damping factor ç. Note that the switching 

time can also be expressed in terms of the change in the VCO control voltage corresponding 

to the frequency step Af0 in which case the frequency error tolerance s will be replaced with 

the equivalent control voltage error tolerance. The VCO tuning sensitivity KVco relates the 

equivalent parameters in the two expressions. 

Equation (3-5) suggests that to reduce the switching time by a factor of P, the loop 

bandwidth has to be increased by a factor of P while keeping the damping factor constant. In 

terms of the loop parameters this is equivalent to increasing the charge pump current ICP by a 

factor of p2 and reducing the loop filter resistor Rz by a factor of p. Even though spurious 

requirements limit the loop bandwidth to be narrower, it can be made wider during the 

locking process and then restored after lock is established. This is the basic principle of 

operation of the adaptive bandwidth synthesizer shown in Figure 3-1. The 'locked' signal 

generated by a lock-detect circuit not shown, or a predetermined timing signal is utilized for 

the adaptive bandwidth control. 
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Two-state 
Charge Pump 

((32-1 )ICP 

Locked 

Control 

ICP 

OUT REF UP VCO PFD 

DN 

OSC 

Two-state 
Loop Filter 

Locked 

N-Divider 

Figure 3-1 Adaptive Bandwidth Architecture 

3.2.2 Limitation of Existing Solution 

The adaptive system described above can be employed to achieve significant 

improvement in the switching time. The switching of bandwidth is accomplished by 

switching an element in the loop filter usually a resistor. If the synthesizer has to settle to a 

very small frequency error (< lppm) in a very short time (tens of microseconds), it becomes 

important to make the transition from high bandwidth to low bandwidth as smooth as 

possible; otherwise the glitches arising from switching of bandwidth contribute significantly 

to the overall switching time [6] [7], An applicable case is the synthesizer used in a GSM 

base station transmitter, which has a switching time specification of less than lOjis for a 

frequency jump of 75MHz with O.lppm error tolerance. It is thus important to limit the level 

of secondary glitches when switching from high bandwidth to low bandwidth mode. The 

sources of the secondary glitches are the parasitic capacitances associated with the switch 

element (typically a MOS switch). At the time of frequency step, the switch in Figure 3-1 is 

closed to reduce the effective resistance in the loop filter by a factor (3. When frequency step 



www.manaraa.com

16 

is complete the switch has to be opened to restore the bandwidth. The transitions on the 

voltage signal controlling the on/off states of the MO S switch cause glitches on the control 

voltage line. The size of the parasitic gate-drain capacitance of the MO S switch determines 

among other things, the level of these glitches. If the control voltage has already settled to 

within the tolerance window at the time of turning off the MO S switch, then the glitches can 

cause the control voltage to swing outside of the window, thus increasing the overall 

switching time of the synthesizer. 

3.3. Proposed Solution 

As described in Section 3.2, minimizing the gate-drain capacitance of the MO S 

switch helps to restrict the level of glitches to within the tolerance window. A second factor 

that determines how fast the VCO control voltage settles after a glitch occurs is the effective 

bandwidth after switching. Thus if a relatively large MO S switch is used to switch from high 

bandwidth to nominal bandwidth, then the size of the MO S switch and the narrow bandwidth 

after switching together contribute to a significantly large switching time. 

The solution proposed in this thesis is based on multi-step bandwidth switching. Here 

the bandwidth is restored to the nominal value in several steps using charge pump and loop 

filter resistor arrays as shown in Figure 3-2. By using smaller steps from high bandwidth to 

nominal bandwidth, the secondary glitches can be effectively controlled due to two main 

factors. First, if the MO S switch resistance is a fixed fraction of the resistor it switches then it 

can be shown mathematically that the maximum MO S switch size in the multi-step approach 

is less than the size of the single MO S switch used in the one-step approach. Secondly, 

transients caused by turning off MO S switches at each of the steps have to settle down with a 

larger bandwidth compared to the one-step approach, which also helps to reduce the overall 

switching time. The above claims are supported through behavioral simulations described in 

Section 3.4. 
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To keep the optimal damping factor constant and only increase the loop bandwidth 

the following relationship has be valid at each of the bandwidth steps. 

YJLCP RZ = Constant (3-6) 

Thus a given sequence of bandwidth steps pHfL —>• P,f, p2f[, ... ^ f|, (f|, - low 

bandwidth, Pn%(= %) - high bandwidth; Pn > Pi > P2 >•••> • ) requires the following 

sequence of Rz and ICp steps: 

RZ/PH > Rz/p! > —» — —» Rz (3-7) 

PH^Icp Pl^Icp Pl^Icp • • • • * Icp 

One of the factors determining the effectiveness of the proposed scheme is the pattern 

used for the steps since it determines the sizes of the switches used in the loop filter. There 

are several possibilities such as binary stepping of Icp, linear stepping of Icp or the Fibonacci 

pattern for I^p. Binary stepping and the Fibonacci pattern result in successive bandwidths 

being close to each other near the nominal bandwidth and far apart near the high bandwidth, 

with the switch sizes decreasing with decreasing bandwidth. Linear stepping of bandwidth 

results in equal-sized MO S switches and can also be an optimum choice. Though the 

different patterns were simulated, the results are presented in Section 3.4 only for the binary 

pattern. Note that once the high bandwidth and the type of pattern are chosen, the number of 

steps will be fixed. For example if the high bandwidth is eight times the nominal bandwidth 

and if binary stepping of Icp is chosen, then the number of steps will be six corresponding to 

ICp multipliers of 64, 32, 16, 8, 4,2, 1. The second factor determining effectiveness is the 

time at which each step occurs which is pre-determined based on the initial lock time in the 

high bandwidth mode, the magnitude of perturbation at each step, and the effective 

bandwidth at the start of each step. In the two-step case presented in Section 3.4, the time for 

the next step is chosen to be the time of the first zero crossing of the control voltage in the 
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current step. +/- 15% variations in the time steps have also been considered to demonstrate 

the robustness of the proposed scheme. 
Charge Pump Array 
(Multiple Current-

Levels) 

P'ICP Total 

Timing 
Control 

N-Divider 

Loop Filter ^L, 
Resistor Array 

(Multiple Switched-
Resistors) 

Figure 3-2 Proposed Adaptive Bandwidth Architecture 

3.4. Behavioral Simulation 

3.4.1 GSM Fractional-N Synthesizer 

The proposed scheme is first verified through behavioral simulation of a Fractional-N 

(output frequency is a fractional multiple of reference frequency) synthesizer using GSM 

specifications. The reference frequency can be much higher than the channel spacing for 

Fractional-N synthesizers, hence the loop bandwidth limit is mainly set by the spurious 

requirements. The objective of this simulation is to demonstrate the level of improvement 

that can be achieved with the proposed scheme in synthesizers with very stringent switching 

time specifications. The simulation setup uses behavioral models for all the building blocks 
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including the programmable charge pump except the loop filter, which uses NMOS switches 

so that the effect of secondary glitches can be simulated. The loop filter configurations used 

in the one-step and two-step cases are shown in Figure 3-3. In all the branches of the 

switched-resistor-array, containing a fixed resistor and a MO S switch, the on-resi stance of 

the switch is always chosen to be 1/9 of the fixed resistance. The loop parameters used in the 

simulation are given in Table 3-1. 

Table 3-1 Behavioral Simulation Parameters for GSM Synthesizer 

Frequency step Af0 

75MHz 

(1710MHz- 1785MHz) 

Error tolerance s O.lppm 

Reference frequency f% 26MHz 

Nominal charge pump current ICP 0.213mA 

Nominal loop bandwidth fc 40KHz 

High loop bandwidth 8fc 320KHz 

Phase margin <DM 46.4° 

Damping factor ç 0 7906 

Nominal loop filter resistor Rz 2.5KQ 

Loop filter zero fz 16KHz 

Loop filter pole f? lOOKHz 

VCO tuning sensitivity KVco 37.5MHz/V 

Firstly, comparison is done between the switching times obtained in the following 

two cases. 
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Casel: High bandwidth switched to nominal bandwidth in one step 

8fc —> fc 

Case2: High bandwidth switched to nominal bandwidth in two steps 

8fc —> Vs fc —> fc 

1 

Rz %R Z64 1 

h 
SW64 1 

<7 

One-step Case 

1 

: Rz -=E Rzs 1 

Un 
SW8 1 

Rz 

un 
SW64 

Two-step Case 

Figure 3-3 Loop Filter Configurations for One-step and Two-step Bandwidth Switching 

In the one-step case, the bandwidth is switched at 10.5jas (using initial lock time 

estimate) whereas in the two-step case, the first step occurs at 10.5p,s and the second at 

11.43[j,s. Figure 3-4 shows the locking profile where the VCO control voltage settling to the 

tolerance window is shown against time. The total switching time is 18.21 jas for the one-step 

case and 11.75[j,s for the two-step case. This is nearly 35% improvement in the switching 

time. 

It was mentioned in Section 3.3 that the time at which switching of bandwidths has to 

occur is determined based on the zero-crossings of the tune voltage. To demonstrate 

robustness of the proposed scheme, simulations are performed with +/- 15% variations in 

these times. Table 3-1 shows the results of these simulations. It can be observed that with the 

variations included, there is still a 35% improvement in the total switching time. 
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Finally, a synthesizer with six bandwidth steps is simulated. The first step occurs at 

8.1jis (optimal for six bandwidth steps) and time between subsequent steps is 0.5jas. Loop 

filter in this case uses six switched- resistors similar to the configuration shown in Figure 3-3. 

The ICP and Rz at each step are multiplied by factors as shown below: 

VCO Control Voltage (V) 

— One-step 

Two-steps 

Tolerance Window 

50.01 ,0i 70.01 80.0U ! 
time ( s ) 

90. ,0i 100U 110U 

Figure 3-4 Locking Profile for One-step and Two-step GSM Synthesizer 

VCO Control Voltage (V) 

50.0u 70.0u 90.0u 100u 110U 
time ( s ) 

Figure 3-5 Locking Profile for Six-step GSM Synthesizer 
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ICP multiplier: 64—>32—>16—>8—>4—>2—>1 

Rz fraction: 1/8 —> i/V32 1/4 —> i/Vs 1/2 —> 1/V2 1 

Locking profile is shown in Figure 3-5. The total switching time in this case is 10.62j_is. 

Table 3-2 Total Switching Time with 15% Variation in Bandwidth Intervals 

One step - at tswi 
Two steps - first step at tswi and 

second step at tswi 

1 I 

Total 

switching 

time 

tsw (us) 

1 1 

1 I 
Total 

switching 

time 

tsw (us) 

10.15 18.21 10.5 

11.43 11.75 

10.15 18.21 10.5 11.29 11.84 10.15 18.21 10.5 

11.57 11.67 

10.14 18.46 10.14 

11.43 11.43 

10.14 18.46 10.14 11.29 11.29 10.14 18.46 10.14 

11.57 11.57 

10.36 19.11 10.36 

11.43 11.52 

10.36 19.11 10.36 11.29 11.61 10.36 19.11 10.36 

11.57 11.57 

3.4.2 Integer-N Synthesizer with Tight Error Tolerance 

Next a 2.4GHz Integer-N synthesizer with an error tolerance of lppm for an 80MHz 

step is considered. Simulations are performed to study the advantage of the proposed multi-

step bandwidth-switching scheme in terms of the achievable switching times when the loop 
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bandwidth is limited by both the reference frequency and the spurious requirements. Table 3-

3 shows the simulation parameters. 

Table 3-3 Behavioral Simulation Parameters for Integer-N Synthesizer 

Frequency step Af0 

80MHz 

(2400MHz - 2480MHz) 

Error tolerance, s lppm 

Reference frequency f% 1.172MHz 

Nominal charge pump current ICP 28^A 

Nominal loop bandwidth fc 10kHz 

High loop bandwidth 4fc 40kHz 

Phase margin <DM 46.4° 

Damping factor ç 0.7906 

Nominal loop filter resistor Rz 54.7kfi 

Loop filter zero fz 4kHz 

Loop filter pole f? 25kHz 

VCO tuning sensitivity KVco 100MHz/V 

The locking profile (Figure 3-6) shows a 25% improvement in switching time with 

four bandwidth steps (total switching time = 68.8[j,s) versus one bandwidth step (total 

switching time = 92.2p,s). 
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Figure 3-6 Locking profile for One-step and Four-step Integer-N Synthesizer 

The above behavioral simulations substantiate the effectiveness of the proposed 

multi-step bandwidth-switching scheme. This simple and practical on-chip solution is 

implemented on silicon in a 2.4GHz Integer-N synthesizer, design of which is described in 

extensive detail in Chapters 4 and 5. 
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CHAPTER 4. SYSTEM DESIGN 

In this Chapter, the system-level implementation of the proposed adaptive bandwidth 

synthesizer is discussed. Details of the implemented architecture and the system-level 

parameters are presented and the design specifications for the individual blocks are derived 

based on these parameters. 

4.1. Architectural Implementation 

The proposed architecture uses a Type-II third-order loop similar to the conventional 

architecture. However, to implement multi-step bandwidth switching, the charge pump and 

the loop filter of the conventional synthesizer are modified as illustrated in Figure 3-2. The 

charge pump is implemented as an array of multiple unit cells that provides programmable 

current and the loop filter resistor is implemented as a switched-resistor array. The unit cells 

in the charge pump array and the resistors in the switched-resistor array are controlled with 

timing signals generated by a control block such that the sequence shown in Equation (3-7) is 

followed. For implementing on silicon, a realistic value of |3H = 4 is used with binary 

stepping of Icp. This results in four bandwidth steps with the high to nominal bandwidth 

sequence as shown in (4-1). 

4fc ^ 2 V2 fc -^2% ^ V2 fc ̂  fc (4-1) 

The proposed architecture requires a timing control block, which ensures that each 

bandwidth setting is valid for a preset number of clock cycles starting from the instant when 

frequency jump is initiated. Additionally, in contrast to the conventional architecture, the 

implemented architecture uses a fixed ratio divider instead of a programmable divider and a 

multiplexer for selecting reference clock inputs for the following reasons. Typically in a 

synthesizer, the instant when frequency step is initiated corresponds to the change in the 

division ratio of the N-Divider. However, to reduce design time and complexity and focus 

primarily on the proposed bandwidth-switching scheme, only a fixed ratio divider is used in 
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the new architecture. To achieve frequency step with a fixed ratio divider, a multiplexer 

(hereby referred to as reference multiplexer) is used to select between two reference clocks, 

which differ in frequency by an amount corresponding to the VCO frequency step. This way, 

frequency step is initiated by a change in the state of the multiplexer select signal fsTEP-

Assume for example, that the two input clocks to the multiplexer have frequencies, = 

1MHz and fR2 = 1.2MHz. If the select input changes from '0' to '1', it causes a reference 

frequency step of 200 KHz, which causes the VCO frequency to jump from 2.048GHz to 

2.4576GHz (with divider ratio fixed at 2048). 

Before concluding this section, it should be mentioned that in addition to the four-

step mode, the proposed architecture also supports single step and non-adaptive modes, used 

mainly for comparison of switching times. 

4.2. Bandwidth Switching Sequence 

In the previous section, the role of the control block was briefly mentioned. In this 

Section the function of the control block is put into perspective by looking at the sequence of 

events that occur during the frequency switching process in the four-step mode. The 

sequence is illustrated in the timing diagram of Figure 4-1. 

1. Reference multiplexer select input fsTEP changes state indicating a frequency step 

from fRi to fR2 or vice versa, where fRi and fR2 are the frequencies of the two reference 

clock inputs. 

2. Immediately, the control signals SW16 8, SW84, SW4 2 and SW21 go high 

thereby activating all the unit cells in the charge pump array and all the resistors in 

the loop filter resistor array. This is the highest bandwidth mode of the synthesizer 

with four times the nominal bandwidth fc. With 4fc bandwidth, the loop responds 

quickly to the frequency step by adjusting the VCO control voltage. The significant 
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amount of the required change in VCO control voltage is achieved in this mode while 

the lesser bandwidth modes are used for finer settling. 

fsTEP _j 

CLK 

SW16J 

SW8 4 

7-8 cycles 

SW4_2 

SW2_1 J 

8 cycles 

16 cycles 

< > < > 
32 cycles 

< > 

Figure 4-1 Timing Diagram of Bandwidth Switching Sequence 

3. The high bandwidth mode should not be retained for a long time as this can cause 

significant peaking in the VCO control voltage and result in undesired behavior. The 

duration of the high bandwidth in this architecture is set to between seven and eight 

clock cycles. After this duration, 2 V2 fc bandwidth mode starts, i.e., SW16_8 is 

made low while other control signals remain high. With the new bandwidth, the 

control voltage further settles to the final value. 

4. In this manner each bandwidth mode remains for a fixed number of clock-cycles 

before next bandwidth modes starts as per the sequence shown in (4-1). 

5. Finally after all control signals are low, nominal bandwidth is restored. The switching 

time is measured from the transition on fsiEP until the control voltage settles to a 

tolerance window around its final value. 

The control block is thus very essential for the proposed synthesizer architecture. 

4.3. Loop Design 

Before proceeding with the design of individual blocks, the loop parameters are 

calculated based on the system-level specifications. The specified and the derived parameters 



www.manaraa.com

28 

are described in detail in the context of the step-by-step loop design procedure given below. 

A Type-II third-order maximum-phase-margin loop described in Section 2.4 is used. 

Step 1: The nominal loop bandwidth is specified based on the theoretical limit. With 

reference frequency f% of 1.172MHz, the theoretical limit for the loop 

bandwidth is 117.2kHz. A value of fc = 10kHz is chosen such that enough 

margin is available for the highest bandwidth mode. Note that in practice fc is 

chosen based on spurious requirement, however goal of this design is only to 

compare switching times for a given nominal fc, hence no spurious 

requirement is specified. 

Step 2: As discussed in [6], for minimum switching time, phase margin <DM around 

50° is required. From (2-18), a value of a = 6.25 gives a phase margin of 

46.4°. This sets the damping factor ç to 0.7906 (Equation (3-4)). 

Step 3 : With the nominal loop bandwidth and damping factor known, the switching 

time in the non-adaptive mode can be derived using (3-5) for given frequency 

step and error tolerance. For a 20MHz step (2.4GHz to 2.42GHz) and 30ppm 

error, the switching time is 195j_is. Note that this is only an approximate 

theoretical value. The simulated and/or measured value will be used as the 

basis for the improvement in the switching time in the four-step mode. 

Step 4: For the maximum-phase-margin loop, the ratios of the loop bandwidth to the 

loop filter zero and pole frequencies are given by (2-21). With a = 6.25, the 

zero and pole frequencies are respectively fz = 4kHz and f? = 25kHz. 

Step 5: If the VCO tuning sensitivity KVco is known, Equation (3-1) can be used to 

calculate the product [IcpRz]. The tuning sensitivity of monolithic VCOs 

varies significantly over process corners and temperature. This causes the 

open loop bandwidth also to be process-corner and temperature dependent. To 

overcome this dependency, in some advanced implementations, the charge 
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pump current ICP is designed to track the variations in KVco- However only a 

simpler implementation is used in this work. A specified KVco value of 

70MHz/V is used in Equation (3-1) to calculate the product [IcpRz]-

Step 6: Next, the nominal charge pump current ICP or the loop filter resistor Rz are 

specified. Smaller ICp requires larger Rz and vice versa for a constant [IcpRz]. 

With large Rz, smaller capacitors can be used in the loop filter thus saving die 

area. A value of nominal ICP = 40pA is found to give capacitor values that can 

be implemented in the available die area. 

Step 7: With ICp = 40p.A, Rz is found to be 54.7kfi. For the zero and pole frequencies 

calculated in Step 4, Cz and Cp are calculated to be 727pF and 138.5pF. 

The circuit level implementation of the building blocks of the synthesizer using the 

calculated loop parameters is discussed in the following chapter. Table 4-1 summarizes the 

system specifications. 
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Table 4-1 System Specifications 

Architecture 

Integer-N architecture 

Type-II third-order Loop 

Adaptive bandwidth 

High bandwidth four times nominal bandwidth 

Four steps from high-to-nominal bandwidth 

Binary stepping of charge pump current 

Top-Level Specifications 

Output frequency 2.4GHz 

Reference frequency 1.172MHz 

Divider ratio 2048 (fixed) 

Loop Parameters 

Specified Derived 

fc = 10kHz 
tsw = 195[j,s 

(Af0 = 20MHz; s = 72.6kHz) 

@M = 46.9° 

q = 0.7906 

Cz/Cp = 5.25 

fz = 4kHz 

fP = 25kHz 

Kvco = 70MHz/V [ICPRZ] = 2.188 V 

ICP = 40^A 

Rz = 54.7kfi 

Cz = 727pF 

CP= 138.5pF 
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CHAPTER 5. DESIGN OF BUILDING BLOCKS 

In this Chapter, circuit level implementation of various building blocks of the 

synthesizer is discussed. The design specifications are based on the loop parameters 

calculated in Section 4.3. The simulated performance of these building blocks and the whole 

synthesizer is presented in Chapter 6. 

5.1. Voltage Controlled Oscillator (VCO) 

The Voltage Controlled Oscillator (VCO) provides the output signal of the frequency 

synthesizer. By controlling the output frequency with the phase-frequency error signal 

generated through feedback, the VCO can be made to 'lock' to a stable reference clock. 

Different types of VCOs exist, however in communication systems where spectral purity is 

important, a LC VCO is preferred since the frequency can be accurately set by using 

resonance of the LC tank while a negative resistance in the form of cross-coupled active 

device pair compensates for the losses in the tank. In these types of VCOs, frequency control 

can be achieved using variable capacitors or varactors. 

5.1.1 VCO Analysis 

Before presenting specific details of circuit design, the basic design equations and 

trade-offs are reviewed. 

Figure 5-1 shows the conceptual implementation of a LC oscillator with an ideal 

negative conductance element gMN. RPEQ represents combined losses in the tank that includes 

the series losses of L and C and additional loss due to interconnects. 

QmN 

Figure 5-1 Conceptual LC Oscillator 
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The negative conductance compensates the tank losses and sustains oscillations at the 

resonance frequency of the tank [8], 

a° = TLC <5_1) 

The characteristic impedance (Z0) and quality factor (Q) at the resonant frequency co0 

are important properties of the LC tank that directly affect the VCO performance and are 

given by 

ZQ -
r î ^ 

(5-2) 

0 = (5-3) 

The necessary minimal conductance to sustain oscillations is given by: 

SmN g Q2 ^ ^ 
^PEQ 

However, in reality, to enable startup under all conditions, RN is over designed by a 

factor a > 1 such that gmN = a—— 
R-PEQ 

Fig. 5-2 shows the implementation of LC oscillator using PMOS cross-coupled pair 

as the negative conductance element. It can be shown that the PMOS cross-coupled pair 

provides a negative conductance of 

(5-5) 

In (5-5), gmi (= gm2) is the transconductance of Mi (M2) given by (5-6) with IT being 

the tail current. 

S ml = in,Cm — IT (5-6) 

Thus for a given oscillation frequency coo, startup gain a and power consumption IT, 

the device sizes can be computed using (5-4), (5-5) and (5-6). 

W1 _ 4 a2 

A ( Q Z j n C J ,  
(5-7) 
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Figure 5-2 PMOS Implementation of Negative Conductance 

Equations (5-1) and (5-7) provide basic constraints for the VCO design apart from the 

tunability requirements described in Section 5.1.3. The process technology used (TSMC 

0.25|j,m) imposes further constraints on the choice of L and C and the achievable quality 

factor Q. Specific details of the VCO design tailored to the TMSC 0.25p,m process are given 

in the following section. 

5.1.2 VCO Design 

The TSMC 0.25pm mixed-mode process offers thick top metal (physical thickness: 

1.5|im) that can be used to build on-chip spiral inductors. The process design kit (PDK) 

supplied by the vendor includes a device library for active and passive devices. For inductors, 

the library offers selectable number of turns from 2.5 to 6.5. Once the number of turns is 

selected, the inductance is fixed. For the differential VCO design, two inductors of 5.5 turns 

each were selected based on the desired oscillation frequency and available die area. An 

inductor with 5.5 turns gives an inductance of about 8.675nH and has a Q of 7.3 @2GHz. 

With the value of L known, the desired tank capacitance can be found from (5-1). As 

mentioned before, varactors, also from the device library, are used. The varactors structure 
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consists of a NMOS array on N-well. The actual varactor capacitance in the operating range 

of the VCO is much less than the value predicted by (5-1), considering the parasitic 

capacitances of the PMOS devices and the loading of the coarse tuning capacitors described 

in Section 5.1.3 

The final design of the VCO core is shown in Figure 5-3. It should be mentioned that 

the design equations presented above serve only as a starting point while a thorough 

simulation using different model corners and temperatures is used to arrive at the design 

shown in Figure 5-3. A tail current of 2mA is chosen for reasonable power consumption and 

is found to give sufficient start up gain. A current mirror driven by off-chip resistor supplies 

the tail current. 

Resistor 
Voutn 

I UNh 
Voutp 

Figure 5-3 VCO Core 

5.1.3 Tunability 

In integrated LC oscillators, the tuning range is limited by two main factors. One is 

the range of the control voltage VTUNE, which is limited to within at least 500mV of the 

positive and ground rails. With 2.5V charge pump supply this translates to only 1.5V or with 
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3.3V charge pump supply as is used in the current design, it translates to 2.3V. The limited 

range may be insufficient for the application at hand, given the large variations in center 

frequency caused by on-chip components. Second factor is the need to use a VCO with a 

small tuning sensitivity (Kyco). This is important because higher Kyco means any noise 

voltage present at the tuning port of the VCO causes frequency modulation of the VCO 

output and degrades its phase noise. 

For these reasons practical on-chip VCOs are always complemented with discrete or 

coarse tuning. By providing three to four bits of programmability of the center frequency, the 

process variations can be accounted for in a discrete manner. The VCO uses four bits as 

shown in Figure 5-4, with each successive bit doubling the tank capacitance. 

M7 

0.5mA^ 

Vbufn 

M5 

VBIAS 

2mA 

M1 

Voutn 

Ô Ô Ô Ô 
b3\ b2\ bl\ b0\ 

M2 

VTUNE 

1 
VC1 VC2 

L1 L2 

Voutp 

8C 4C 2C C 
T 

M8 

0.5mA 

Vbufp 

M6 

Figure 5-4 VCO with Coarse Tuning and Output Buffers 

5.1.4 Output Buffers 

The interface of the VCO with the divider is complicated due to the differences in the 

dc-levels and signal swings at the VCO output and the divider input. The VCO core produces 
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differential outputs centered on a zero dc level (In the absence of special biasing, the 

inductors force the dc operating point to zero). However, the high-speed divider that follows 

the VCO is based on source coupled logic (SCL) which operates on minimal signal swings to 

enable faster rise and fall times. The divider requires clock input of 600mVpp with a dc level 

of 1.9V. Thus PMOS level-shifters are employed at the outputs of the VCO core as shown in 

Figure 5-4. The devices M5 and M6 shift the dc level of the VCO outputs while also 

reducing the signal swing according to the current flowing in M7 and M8 respectively. An 

average current of 500pA is consumed by each level-shifter with the peak current as high as 

1mA. The high frequency nature of the VCO output necessitates such high current 

consumption. 

5.2. Charge Pump 

The charge pump converts the UP and DN pulses from the PFD into equivalent 

source and sink currents for the loop filter. The proposed architecture uses a 16-cell charge 

pump array for programmable current. In the following sections, the design of the charge 

pump unit cell and the implementation of the charge pump using multiple unit cells are 

described. 

5.2.1 Design Considerations 

An ideal charge pump must have zero mismatch of the UP and DN currents and 

infinite output impedance. Several factors affect the UP and DN current mismatch including 

the accuracy of the reference current and the mismatch of the current mirrors used in the 

charge pump. To achieve high output impedance, a cascode current mirror can be used at the 

output. A low-voltage cascode is preferable, since it maximizes the available VTUNE range. In 

addition to using a low voltage cascode, dedicated power supply to the charge pump that is 

higher than the power supply of the other synthesizer blocks helps to increase the VTUNE 

range further. Modern CMOS processes typically offer the option of "thick-oxide" transistors 
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that can be used in high volt applications. For example, in the TSMC 0.25p,m process, the 

nominal supply voltage is 2.5V whereas 3.3V supply can be used with the thick-oxide 

transistors. 

Before presenting details about the circuit design of the charge pump, the dead-zone 

phenomenon, which is critical to the design of the PFD and the charge pump, is discussed. 

The current sources in the charge pump are constantly tumed-on and off in response to the 

UP and DN pulses from the PFD. A narrow UP or DN pulse may not sufficiently turn-on the 

current source owing to the parasitic capacitances at various nodes inside the charge pump. 

Since the width of the UP and DN pulses is determined by the phase difference of the PFD 

inputs, a phase difference less than a finite value +/-Od doesn't produce an equivalent charge 

pump output current. The +/- <Dd interval is known as the dead-zone of the PFD-CP. 

Dead-zone is undesirable since during this interval the loop is essentially open 

causing the VCO to be free running and pick up any noise on the control line without 

feedback correction. Thus a smaller dead-zone is preferable for a low-noise synthesizer. The 

charge pump used in this work however has large (~20ns) dead-zone due to the slow cascode 

current mirrors used for high output impedance and better isolation between the switching 

nodes and output node. Dead-zone is eliminated by producing minimum UP and DN pulses 

instead of a 'no-pulse' for zero phase difference. The width of the minimum pulses is set by 

the PFD as explained in Section 5.3 

5.2.2 Charge Pump Cell Design 

As mentioned in Section 4.1, the adaptive bandwidth synthesizer uses a charge pump 

with multi-step programmable current. The maximum programmable current is 16 times the 

current during normal operation. To achieve this programmability, the charge pump is 

designed as an array of 16 identical cells. Each cell outputs a nominal current of 40pA. One 
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unit cell is always operating, while the remaining 15 cells operate only when the synthesizer 

is switching to a new frequency. A timing control block described later in Section 5.6 

controls the operation of these 15 cells. The design of the charge pump unit cell is described 

in detail below. 

The charge pump cell converts UP and DN pulses from the PFD into UP (sourcing) 

and DN (sinking) current pulses. This is accomplished using current steering switches and 

low voltage cascode mirrors. The magnitude of the current pulses is the charge pump current 

ICP that is set to 40pA as specified in Section 4.3. Shown in Figure 5-5, is the portion of the 

charge pump cell that generates the DN current IDN- UP current is generated by the 

c o m p l e m e n t a r y  v e r s i o n  o f  t h e  c i r c u i t  s h o w n  i n  F i g u r e  5 - 5 .  T h e  c u r r e n t  s t e e r i n g  s w i t c h e s  M l ,  

M2 driven by complementary signals DN, DNb steer the tail current IREF,DN either to the low 

voltage cascode current mirror (M5-M9) or to ground in the presence and absence of the DN 

pulse respectively. The current steered to the cascode mirror is then reflected at the output 

VLPF with a mirror ratio of four. 

It can be seen that the current in the cascode mirror goes to zero in the absence of the 

DN pulse. This causes the current mirror to turn-off rather slowly compared to the turn-on 

phase. In order to speed up the turn-off response, a standby current is added. The standby 

current is usually a small fraction of the full current and doesn't affect the loop filter current 

ILPF- The standby current is added through another pair of current steering switches M3, M4 

used to steer the standby current ISBY,DN- ISBY,DN acts as secondary tail current. When the 

primary tail current is steered to ground, the standby current is steered to the current mirror 

and vice versa. This ensures the current mirror always carries a finite current and thus 

responds faster to the UP and DN pulse transitions. The charge pump uses a ISBY,DN of 2pA 

and IREF,DN of 12pA. 
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3.3V 

Charge Pump Bias 
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M8 

M6 

Figure 5-5 Part of Charge Pump Cell Generating Down Current 

The advantage of using a low voltage cascode is the reduction in the minimum value 

of VLPF required for M5-M8 to remain in saturation. Note that VLPF is essentially the VCO 

control voltage VTUNE and thus maximizing the range of VLPF is equivalent to increasing the 

tuning range of the VCO. Up to one threshold voltage reduction in the minimum value of 

VLPF can be achieved with the low-voltage cascode leading to significant improvement in the 

VCO tuning range. 

A 3.3V supply is used for the charge pump to further maximize the VLPF range. 

Accordingly thick-oxide transistors are used everywhere except for the current steering 

devices M1-M4 since the gates of these devices are controlled by UP and DN signals which 

are in the 2.5V domain. 
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5.2.3 Charge Pump Bias 

The accuracy of the charge pump current is very important to the performance of the 

synthesizer. Specifically, the reference current source that is used to generate the output 

current of the charge pump should be accurate to few ppm over process corners and 

temperature. This is accomplished typically by an on-chip band-gap reference. However, an 

on-chip reference has not been used in this work and the reference current is set using an 

external resistor RCPBIAS (Figure 5-6). Each unit cell uses 4JAA bias current and the VLPF 

nodes of all the 16 cells are tied together so that 64|IA current is needed through RCPBIAS-

3.3V 

'SBY,DN 'CASCODE,DN 
Off-
Chip 
Resistor 

RCPBIAS 

ISBY.UP ICASCODE.UP 

Figure 5-6 Charge Pump Bias Circuit 

5.2.4 Charge Pump Array 

Using the single charge pump cell, a 16-cell charge pump array shown in Figure 5-7 

is created. Gated logic controls the operation of 15 unit cells using the control signals from 

the timing control block. For the single cell that is always on, the standby current always 

flows, whereas for the remaining 15 cells, standby is turned off altogether once the frequency 
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switching is complete This is to reduce disturbance in steady state at the VLPF node where 

currents from all the 16 cells are summed. 

SW16 8 SW8 4 SW4 2 SW2 1 

UP UPb DN DNb 

LPF 

CPUnit CPUnit<3:0> CPUnit<1:0> 
CPUnit 

(Always ON) 
CPUnit<7:0> 

Gated Logic 

VLPF 

Figure 5-7 16-cell Charge Pump Array 

5.3. Phase Frequency Detector (PFD) 

Conventional D-Flip Flop (DFF) based PFD is used. Figure 5-8 shows the gate level 

implementation of the PFD. The internal reset (RSTi) is activated when both UP and DN 

outputs are high, but after a finite delay to eliminate the dead zone. As explained in Section 

5.2.1, this delay is determined based on the response time of the charge pump. 
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REF 

UP 

UPb 
RSTe RSTi 

DN 

DNb 

osc 

Figure 5-8 Phase Frequency Detector 

The reset delay is achieved using a chain of long channel inverters (II - 14). To 

generate complementary signals, cascades of inverters are used at the outputs such that UP, 

UPb, DN and DNb are closely matched in terms of delay from inputs REF and OSC. The 

external reset (RSTe) is used to initialize the DFF outputs on power up. 

5.4. Loop Filter (LPF) 

A second-order passive loop filter is used. The values of Rz, Cz and C? are calculated 

in Section 4.3 and are shown in Table 5-1. In order to have programmable loop bandwidth, 

Rz is implemented as a resistor array consisting of a fixed resistor Rz in parallel with four 

switched resistors Rziô 8, Rzs 4, Rz4 2 and Rz2 1 as shown in Figure 5-10. During normal 

operation all the NMOS switches are OFF so that the total resistance is Rz and the nominal 

bandwidth is fc. As higher bandwidth is needed during a frequency jump, the NMOS 

switches are turned ON and then OFF in a sequence determined by the timing control block. 

With all switches ON, the total resistance is Rz/4 and the loop bandwidth is 4fc. The 

switched-resistor values are chosen such that at any bandwidth setting Equation (3-8) is 
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satisfied. The resistance of the NMOS switch is chosen to be 1/9 of the resistor it switches. 

The fifth resistor Rzi6_i is used in the single-step mode to switch the bandwidth from 4fc to 

fc in one-step. 

Table 5-1 Loop Filter Parameters 

Rz 54.7kfi 

Cz 727pF 

cP 138.5pF 

V TUNE 

Cp 

Rz RZ2 1 <E RZ4_2 <E R; 

SW2 1 

Z8 4 > Rz16_8 

SW4 2 
1 — 1 — 1 — 1 — 1 

SW8 4 

: Rzi6 1 

SW16 SW16 1 

Figure 5-9 Loop Filter with Switched-Resistor Array 

Metal-insulator-Metal (MiM) capacitors are readily available in the TSMC 0.25|im 

process. The MiM structure consists of a layer called CTM (Capacitor Top Metal) on top of 

Metal 4. These capacitors provide a capacitance density of lfF/jim2. Large arrays of small 

unit capacitors are used for Cz and CP. P+ poly resistor without salicide has a sheet resistance 

of 1600/sq and is used to implement all the resistors in the loop filter. 
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5.5. N-Divider 

The N-Divider is one of the power-hungry blocks in a synthesizer. High-power 

source-coupled logic (SCL) is needed to divide the high-frequency VCO output. SCL uses 

small swing signals and high supply current to achieve division of high frequency inputs. 

Since the frequency divides down with each stage, in practice, only the first three or four 

stages of the divider use SCL, followed by standard digital logic to implement further 

division. In this design, a divide-by-2048 block is implemented as a divide-by-8 SCL stage 

followed by a divide-by-256 digital stage. Before proceeding it should be mentioned once 

again that only a fixed-ratio divider is used in this work for reasons explained in Section 4.1. 

Figure 5-10 shows the implementation of div-by-2048 block. Design of the divide-by-

8 SCL stage (DIV8SCL) and the divide-by-256 digital stage (DIV 256 DIGITAL) is 

described below. 

Off-
Chip -
Resistor 

VCO IN 

EN_B 

Figure 5-10 Top-level Implementation of N-Divider 

5.5.1 Divide-by-8 SCL Divider 

The basic element of the divide-by-8 SCL divider is a SCL D-Latch that forms a D 

flip-flop (DLL) in Master-Slave configuration. The DLL is in turn configured as a divide-by-

2 stage (DIV 2 SCL) by connecting its outputs back to the inputs in a complementary 

fashion (Qb is connected to D and Q is connected to Db) as shown in Ligure 5-11. Linally 

three divide-by-2 stages are cascaded to form the divide-by-8 stage. 
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DIV 2 SCL 

SCL OFF 

QLS 

Level 
Shifter 

TO NEXT 
DIV 2 SCL 

QLSb VCOIN 

Db SCL Qb 
D-Latch 

CLK 
CLKb 

Db SCL Qb 
D-Latch 

CLK 
CLKb 

Figure 5-11 SCL DFF Configured as Div-by-2 

T" 
)Qb 

CLKb il M1 M2 11 CLK 

D-Latch 

HI M3 

T 
) QLS 3 QLSb 

Level-Shifter 

Figure 5-12 SCL D-Latch and Level-Shifter 

Figure 5-12 shows the conventional SCL D-latch combined with the level-shifter 

circuit. M3 acts as the level-shifting resistor. A level-shifter is required because of the 

following signal swing requirements at the data (D), clock (CLK) inputs and the outputs (Q). 
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D: 1.9V - 2.5 V; Q: 1.9V - 2.5 V; CLK: 1.6V - 2.2V 

Thus to connect the output of the first divide-by-2 to the input of the next divide-by-2, 

a 300mV shift in the dc level is required. The signal swings are kept to the minimum required 

to steer the tail current between Ml and M2. The first divide-by-2 stage operates on the 

highest frequency input and thus uses the maximum tail current of lOOuA. As the frequency 

is divided down in subsequent stages, the tail current also can be reduced. Accordingly, the 

second and third divide-by-2 stages use only 50uA tail current. The third divide-by-2 is 

followed by differential to single-ended rail-to-rail converter shown in Figure 5-13. The 

differential stage amplifies the small swing signals such that they cross the threshold level of 

the inverter that follows it. The inverters convert the single-ended signal to a rail-to-rail logic 

signal suitable as input to the following divide-by-256 stage. 

x 

Differential 

lnpuHC 

VB,,Hr 

Rail-to-Rail 

^^utput 

<7 

Figure 5-13 Differential to Singled-ended Converter 

5.5.2 Divide-by-256 Digital Divider 

Similar to the SCL divide-by-2 stage, a DFF implemented in static CMOS rail-to-rail 

logic can be used to build a digital divide-by-2 circuit. The advantage of using static CMOS 
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logic is that no static current is used and thus it gives a low power implementation. However, 

since rail-to-rail logic is used, only low frequency signals (< 500MHz) can be divided using 

this implementation. 

Figure 5-14 shows the CMOS gate level implementation of the divide-by-2 circuit. 

The active-low enable (EN B) acts like a reset on power up. The divide-by-256 circuit is 

simply a cascade of eight divide-by-2 stages. 

Apart from the basic building blocks, the adaptive synthesizer uses a digital block to 

control the timing of the bandwidth steps. At the start of a frequency step indicated by the 

change in fsTEP, the bandwidth control signals (SW16_8, SW8_4, SW4_2 and SW2_1) are all 

activated. The de-activation of these signals follows a sequence as shown in the timing 

diagram in Figure 4-1. The reference clock for the synthesizer is also used as the reference 

clock for the timing control. It takes up to 64 clock cycles to restore the bandwidth from 4fc 

to nominal. 

The timing control also supports one-step mode. In this case, bandwidth is initially set 

to 4fc and restored to nominal in a single step at the instant corresponding to the first step in 

CLK DIV2 
-O 

Figure 5-14 Digital Divide-by-2 

5.6. Timing Control 
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the four-step mode. Note that in the one-step mode, the control signal SW161 controls the 

switched resistor Rzi6_i while all other control signals are inactive. 

Figure 5-15 shows the implementation of the timing control block. The multiplexer 

selects the controls outputs depending on mode select (one-step or four-step). The control 

signals are set by a transition in fsTEP and are reset by the outputs of the divide-by- 16, 32, 64 

and 128 stages respectively for SW16 8, SW8 4, SW4 2 and SW21. The SW161 control 

signal in the one-step mode is the same as SW16 8 control signal in the four-step mode. 

Div16 SW16_8 
SW8_4 
SW4_2 
SW2_1 

SW16 1 

REF CLK 

(Tin)— 
Div32 
Div64 
Div128 

Mode 

Select 

LATCH 

NETWORK 

DIV-BY-128 

EN 

MULTIPLEXER 

Figure 5-15 Implementation of Timing Control 

5.7. Supplementary Blocks 

The supplementary blocks perform such functions as resetting VCO control voltage 

on power up, probing out dc bias voltages for debug purposes and buffering VCO control 

voltage and N-Divider outputs to the pads. 

5.7.1 VTUNE Reset 

The initial condition on VTUNE after power up is very important, since if it rails, the 

synthesizer may never lock, due to charge pump, VCO or N-Divider failure. Figure 5-16 

shows the circuit used to initialize VTUNE on power up. It is essentially a voltage divider 

formed with MOS devices controlled by the reset signal (RST). When turned on, the PMOS 

and NMOS device resistances set VTUNE to approximately the middle voltage of the charge 

pump supply. After reset is removed, the output is tri-stated for normal operation. 
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2.5 V 

<— 

<— 

A 

—> 

VTUNE 

Figure 5-16 VTUNE Initialization Circuit 

5.7.2 DC Test (OCT) 

Monitoring the bias voltages provides good insight into the debug process. Up to four 

bias voltages in various synthesizer blocks can be output to a single pin using DC switches 

forming a multiplexer. Two digital inputs select the bias voltage to be monitored as shown in 

Table 5-2. Figure 5-17 shows the DC test block. 

Table 5-2 Selection of Internal Nodes for DC Test 

Select Bits Enable DCT of 

00 Charge pump internal bias voltage 

01 Loop filter internal node 

10 Level-shifted VDD of SCL divide-by-2 

11 Internal node of differential-to-single-ended converter 
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EN DCT 

DCTi , DCTo 

Figure 5-17 DC Test Block 

The minimum sized switches allow only DC or very low frequency signals to pass 

through. Thus this test block is not useful for monitoring the VCO control voltage that has 

high frequency ripples. Instead a resized switch network is used as explained below. 

5.7.3 VJUNE Test 

It is similar to the DC Test but the switches are designed such that the high frequency 

ripples on VTUNE can be passed through the loading of the pad and package capacitances. The 

output pin driven by this block can be monitored during normal operation to observe the 

synthesizer locking behavior and measure the lock time. In the debug mode, the charge pump 

and the VCO performance can also be measured by connecting a fixed voltage source to this 

5.7.4 Output Buffer 

The N-Divider output is buffered to the pad for monitoring on an oscilloscope and/or 

a spectrum analyzer. To drive the huge pad and package capacitance (~4.5pF), an inverter 

with WP = WN = 30p,m and LP=LN=2LMIN is used. Since this inverter operates on signals with 

very slow rise and fall times, a dedicated noisy supply is used for this inverter as shown in 

Figure 5-18. The noisy supply is dedicated implying it is not used anywhere in the core. 
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Figure 5-18 Output Buffer for Divided VCO Output 
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CHAPTER 6. SIMULATION RESULTS 

6.1. Switching Time Simulation 

6.1.1 Simulation Conditions 

It is important to first consider simulation run times in a typical synthesizer 

simulation. As explained in [2], switching time simulation of a 2.4GHz synthesizer with a 

reference frequency of 1.172MHz requires few days of run time as well as significant CPU 

and memory resources. It thus becomes impractical to run iterative simulations. A "time 

contraction" technique that can speed up the simulation several times while preserving 

reasonable accuracy is also discussed in [2], 

The same technique is used in this work for the switching time simulation with a 

contraction factor of 16. The reference frequency, division ratio and loop filter capacitors are 

scaled by this factor such that the loop bandwidth and the switching time are scaled 

correspondingly as shown in Table 6-1. 

Table 6-1 Time Contraction Parameters 

Parameter Original Scaled 

f% 1.172MHz 18.752MHz 

N 2048 128 

Cz 727pF 45.4pF 

cP 138.5pF 8.65pF 

fc 10kHz 160kHz 

tsw 195jas 12.2^s 
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Since the reference period is now 53.33ns, the original PFD/CP combination with 

-20ns dead-zone is not suitable for this simulation. Instead a modified version of original 

PFD/CP is used which has a dead-zone of -2ns. Since the focus of this work is a 

'comparison' of switching times in different adaptive and non-adaptive modes, scaled 

simulation results are expected to sufficiently serve as the benchmark for the anticipated 

experimental results. 

6.1.2 One-Step and Four-Step Modes 

Figure 6-1 shows the VCO control voltage transient for an output frequency step of 

20.48MHz in one-step and four-step adaptive modes of the synthesizer. Two cases of one-

step mode are presented - Case 1 : One step occurs at the instant corresponding to the first 

step in the four-step mode, Case 2: One step occurs at the instant corresponding to the last 

step in the four-step mode. Case 2 is studied through simulation only whereas Case 1 can be 

studied though simulation as well as experimentally. 

Table 6-2 shows the switching times (after multiplying by the scaling factor) for 0.1% 

error tolerance for four-step mode and Case 2 of one-step mode (best case). A 14% 

improvement is achieved in the four-step mode. 

Table 6-2 Summary of Switching Times (Transistor-Level Simulation) 

20.48MHz step 

0.1% error 

One-step 
Four-steps 

One-step 
Four-steps 

(Case 2) 

96.4[j,s 112.6ns 
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•800m 
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0 m 4,0,"U 

t ime (  B )  

Figure 6-1 Switching Time Simulation (Transistor-Level): One-step and Four-step modes 

6.2. VCO Simulation 

The main performance parameters of the VCO are its tuning range and phase noise. 

Figure 6-2 and Figure 6-3 show respectively the tuning characteristics and the phase noise of 

the 2.41 GHz VCO output. Table 6-3 summarizes the simulated VCO performance. 

Table 6-3 VCO Simulation Results 

Tuning Range 

(Coarse setting "0000") 
7.4% 

Kyco @2.41GHz 258MHz/V 

Phase Noise @3MHz -127dBc/Hz 

Power Consumption 3mA@2.5V 
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Figure 6-2 VCO Simulated Tuning Curves 
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Figure 6-3 VCO Phase Noise 
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6.3. Charge Pump Simulation 

The functionality of the PFD and charge pump is verified by using the PFD inputs 

REF and OSC that lead/lag with respect to each other. Figure 6-4 shows the simulation of 

OSC input lagging the REF input by 90°. The resulting UP current causes VLPF to ramp up. 

Similarly a lead in the OSC input with respect to the REF input causes VLPF to ramp-down. 

time (s) 

5u 
time (s) 

time (s) 

Figure 6-4 Charge Pump Output when OSC lags REF by 90° 

Apart from the functional simulation, the VLPF range and turn-on/off times of the 

charge pump are simulated. These parameters affect the VCO and the PFD designs. The 

results are summarized in Table 6-4. 

6.4. SCL Divider Simulation 

The maximum input frequency and power consumption are the main performance 

parameters for SCL dividers. The SCL Div-by-8 has a maximum operating frequency > 

3GHz and consumes 625p,A at 2.5V supply. Figure 6-5 shows the divider input from the 

VCO at 2.4GHz and the divider output. 
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Table 6-4 Charge Pump Simulation Results 

Parameter 
Simulated 

value 
Comments 

VLPF 0.6-2.2 V Worst case 

TON/TOFF 15.6ns/15.4ns Dead-zone > 20ns 

Power 

Consumption 
776pA@3.3V In Locked state 

VCO Output (2.4GHz) 

.9 

.8 

1.7 

Si .6 
1.5 

1.4 

.3 

0 0.2u 0.4u 0.6u O.Bu 1.2u 1.4u 1.6u 1.8u 2u 
time (s) 

SCL Divider Output (300MHz) 

O.Bu 1u 1.2u 
time (s) 

Figure 6-5 SCL Div-by-8 Output for VCO Output at 2.4GHz 
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CHAPTER 7. EXPERIMENTAL RESULTS 

7.1. Layout and Fabrication 

The frequency synthesizer is fabricated in the TSMC 0.25pm 2.5V mixed-mode 

process with 5 Metal layers and 1 Poly layer. The mixed-mode version of the process offers 

the following options suitable for mixed-signal designs such as the synthesizer: 

• Thick-top Metal 

• MiM Capacitors 

• Thick-oxide devices 

• Non-Epitaxial Wafers 

All the building blocks described in Chapter 5 are integrated on-chip. The total die 

area is 2.62 x 2.62 mm2 including bonding pads. Figure 7-1 shows the chip micrograph of the 

synthesizer. The loop filter occupies nearly half of the core area (excluding bonding pads) of 

the chip mainly due to the capacitors. 28 bonding pads are used of which eight pads are used 

for the four power supplies shown in Table 7-1. 

Table 7-1 Chip Power Supplies 

Power Supply Nominal Voltage Parts of Chip Supplied 

VDD DIG 2.5V 

PFD, Digital divider, Timing 

control, Reference 

multiplexer, DC Test 

VDD VCO 2.5V 
VCO, SCL divider, VTUNE 

Reset 

VDD CP 3.3V Charge pump, VTUNE Buffer 

VDD BUF 2.5V Divider output buffer 
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Figure 7-1 Synthesizer Chip Micrograph 

Conventional layout practices such as common-centroid and inter-digitization are 

used wherever symmetry and matching are important such as in the differential VCO, Charge 

Pump current mirrors, Charge Pump array and the differential SCL dividers. IR drops in 

metal interconnects are also considered where critical e.g. the VCO and the LPF ground 

connection. 

7.2. Pads and Packaging 

The synthesizer is designed to fit in a 28-pin Ceramic Leadless Chip Carrier (LCC) 

package. Conventional grounded-gate MO S (ggMOS) devices are used in the bond pads for 

BSD protection. Three different types of bond pads are used which differ in the configuration 
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of the ESD devices. These are the VDD pads, GND pads and Input/Output (I/O) pads shown 

in Figure 7-1. 

VDD 

VDD Pad 

GND 

GND Pad 

Input/Output 

<7 

I/O Pad 

Figure 7-2 ESD Configuration 

7.3. Test Results 

A prototype board is built to measure the performance of the synthesizer in the 

laboratory. A simple 2-layer board is used without dedicated power or ground planes. 

The primary measurement objective is the switching time in non-adaptive, one-step 

and four-step modes. The frequency step to be used for the measurement is set using two 

reference clock inputs of slightly different frequencies as already described. To measure the 

switching time, the VCO control voltage can be monitored and/or the frequencies of the two 

PFD inputs can be compared with respect to time. 

The laboratory measurement set up is shown in Figure 7-3. Figure 7-4 shows the 

measured VCO control voltage and the PFD input waveforms on power-up. It was observed 

that the VCO control voltage was quickly railing to the supplies with small adjustments in 

the reference frequency around the anticipated 'lock' frequency. A stable lock condition was 

never achieved preventing any further measurements of switching time. Root cause of lock 
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failure could not be evaluated due to time factor however asymmetry in PFD layout, control 

voltage overshoots resulting in VCO and/or N-Divider failure and the huge variation in KVco 

across the tuning range are some of the potential causes for failure. A second fabrication 

cycle would help resolve some of these issues. 

Figure 7-3 Measurement Setup 

Figure 7-4 Measured VTUNE (Averaged) and PFD Inputs (~1.2MHz) (LV/Div) 
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CHAPTER 8. CONCLUSIONS 

In this thesis, an existing adaptive bandwidth solution to relax the design trade-off in 

fast-switching low-spurious frequency synthesizers is made more efficient by using a multi-

step switching scheme for restoring the bandwidth from high to nominal thereby optimizing 

the total switching time. Behavioral simulations on Fractional-N and Integer-N adaptive 

bandwidth synthesizers using the proposed scheme provided satisfactory results for building 

a proof-of-concept test chip. A 2.4GHz Integer-N synthesizer is designed and fabricated in 

the TSMC 0.25pm mixed-signal CMOS process. Simulation of the whole synthesizer at the 

transistor-level showed a 14% improvement in switching time in four-step mode when 

compared to the best case of the one-step mode. The measurement of switching time could 

not be performed due to the intermittent locking behavior of the synthesizer on power-up. 

The behavioral and transistor-level simulations demonstrated the effectiveness of the 

proposed solution. A thoroughly optimized bandwidth switching sequence specific to the 

application would make the proposed solution a potential candidate for various fast 

frequency hopping systems. 
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